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e The clock handler adjusts the priorities of all processes in user mode at 1 second
intervals (on System V) and causes the kernel to go through the scheduling
algorithm to prevent a process from monopolizing use of the CPU.

The clock may interrupt a process several times during its time quantum; at
every clock interrupt, the clock handler increments a field in the process table that
records the recent CPU usage of the process. Once a second, the clock handler also
adjusts the recent CPU usage of each process according to a decay function,

decay(CPU) = CPU/2;

on System V. When it recomputes recent CPU usage, the clock handler also

recalculates the priority of every process in the “preempted but ready-to-run” state
according to the formula

priority=(*“recent CPU usage”/2) + (base level user priority)

where “base level user priority” is the threshold priority between kernel and user
mode described above. A numerically low value implies a high scheduling priority.
Examining the functions for recomputation of recent CPU usage and process
priority, the slower the decay rate for recent CPU usage, the longer it will take for
the priority of a process to reach its base level; consequently, processes in the
“ready-to-run” state will tend to occupy more priority levels.

The effect of priority recalculation once a second is that processes with user-
level priorities move between priority Jueues, as illustrated in Figure 8.3.
Comparing this figure to Figure 8.2, one process has moved from the queue for
user-level priority 1 to the queue for user-level priority 0. In a real system, all
processes with user-level priorities in the figure would change priority queues, but
only one has been depicted. The kernel does not change the priority of processes in
kernel mode, nor does it allow processes with user-level priority to cross the
threshold and attain kernel-level priority, unless they make a system call and go to
sleep.

The kernel attempts to recompute the priority of all active processes once a
second, but the interval can vary slightly. If the clock interrupt had come while the
kernel was executing a critical region of code (that is, while the processor execution
level was raised but, obviously, not raised high enough to block out the clock
interrupt), the kernel does not recompute priorities, since that would keep the
kernel in the critical region for too long a time. Instead, the kernel remembers that
it should have recomputed process priorities and does so at a succeeding clock
interrupt when the “previous” processor execution level is sufficiently low. Periodic
recalculation of process priority assures a round-robin scheduling policy for
processes executing in user mode. The kernel responds naturally to interactive
requests such as for text editors or form entry programs: such processes have a
high idle-time-to-CPU usage ratio, and consequently their priority value naturally
rises when they are ready for execution (see page 1937 of [Thompson 78]). Other
implementations of the scheduling mechanism vary the time quantum between 0
and 1 second dynamically, depending on system load. Such implementations can
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Figure 8.3. Movement of a Process on Priority Queues

thus give quicker response to processes, because they do not have to wait up to a
second to run; on the other hand, the kernel has more overhead because of extra
context switches.

8.1.3 Examples of Process Scheduling

Figure 8.4 shows the scheduling priorities on System V for 3 processes A, B, and C,
under the following assumptions: They are created simultaneously with initial
priority 60, the highest user-level priority is 60, the clock interrupts the system 60
times a second, the processes make no system calls, and no other processes are
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Figure 8.4. Example of Process Scheduling

ready to run. The kernel calculates the decay of the CPU usage by
CPU = decay(CPU) = CPU/2;

and the process priority as
priority = (CPU/2) + 60;

Assuming process A is the first to run and that it starts running at the beginning of
a time quantum, it runs for 1 second: During that time the clock interrupts the
system 60 times and the interrupt handler increments the CPU usage field of
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process A 60 times (to 60). The kernel forces a context switch at the 1-second
mark and, after recalculating the priorities of all processes, schedules process B for
execution. The clock handler increments the CPU usage field of process B 60 times
during the next second and then recalculates the CPU usage and priority of all
processes and forces a context switch. The pattern repeats, with the processes
taking turns to execute. )

Now consider the processes with priorities shown in Figure 8.5, and assume
other processes are in the system. The kernel may preempt process A, leaving it in
the state “ready to run,” after it had received several time quanta in succession on
the CPU, and its user-level priority may therefore be low (Figure 8.5a). As time
progresses, process B may enter the “ready-to-run” state, and its user-level priority
may be higher than that of process A at that instant (Figure 8.5b). If the kernel
does not schedule either process for a while (it schedules other processes), both
processes could eventually be at the same user priority level, although process B
would probably enter that level first since its starting level was originally closer
(Figures 8.5¢ and 8.5d). Nevertheless, the kernel would choose to schedule process
A ahead of process B because it was in the state “ready to run” for a longer time
(Figure 8.5¢): This is the tie-breaker rule for processes with equal priority.

Recall from Section 6.4.3 that the kernel schedules a process at the conclusion
of a context switch: A process must do a context switch when it goes to slecp or
exits, and it has the opportunity to do a context switch when returning to user
mode from kernel mode. The kernel preempts a process about to return to user
mode if a process with higher priority is ready to run. Such a process exists if the
kernel awakened a process with higher priority than the currently running process,
or if the clock handler changed the priority of all “ready-to-run” processes. In the
first case, the current process should not run in user mode given that a higher-
priority kernei mode process is available. In the second case, the clock handler
decides that the process used up its time quantum, and since many processes had
their priorities changed, the kernel does a context switch to reschedule.

8.1.4 Controlling Process Priorities

Processes can exercise crude control of their scheduling priority by using the nice
system call:

nice(value);
where value is added in the calculation of process priority:
priority=(“recent CPU usage”/constant) + (base priority) + (nice value)

The nice system call increments or decrements the nice field in the process table by
the value of the parameter, although only the superuser can supply nice values that
increase the process priority. Similarly, only the superuser can supply a nice value
below a particular threshold. Users who invoke the nice system call to lower their
process priority when executing computation-intensive jobs are “nice” to other users
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Figure 8.5. Round Robin Scheduling and Process Priorities

on the system, hence the name. Processes inherit the nice value of their parent
during the fork system call. The nice system call works for the running process
only; a process cannot reset the mice value of another process. Practically, this
means that if a system administrator wishes to lower the priority values of various
processes because they consume too much time, there is no way to do so short of
killing them outright.

8.1.5 Fair Share Scheduler

The scheduler algorithm described above does not differentiate between classes of
users. That is, it is impossible to allocate half of the CPU time to a particular set
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of processes, if desired. However, such considerations are important in a computer
center environment, where a set of users may want to buy half of the CPU time of
a machine on a guaranteed basis, to ensure a certain level of response. This section
describes a scheme called the Fair Share Scheduler, implemented in the AT&T
Bell Laboratories Indian Hill Computer Center [Henry 84].

The principle of the fair share scheduler is to divide the user community into a
set of fair share groups, such that the members of each group are subject to the
constraints of the regular process scheduler relative to other processes in the group.
However, the system allocates its CPU time proportionally to each group,
regardless of how many processes are in the groups. For example, suppose there
are four fair share groups on a system, each with an allocated CPU share of 25%,
and that the groups contain 1, 2, 3, and 4 CPU bound processes that never
willingly give up the processor (they are in an infinite loop, for instance).
Assuming there are no other processes on the system, each process in the four
groups would get 10% of the CPU time (there are 10 processes) using the regular
scheduling algorithm, because there is no way to distinguish them from each other.
But using the fair share scheduler, the process in group 1 will receive twice as
much CPU time as each process in group 2, 3 times as much CPU time as each
process in group 3, and 4 times as much CPU time as each process in group 4. In
this example, the CPU time of all processes in a group should be equal over time,
because they are all in an infinite loop.

Implementation of this scheme is simple, a feature that makes it attractive:
Another term is added to the formula for computation of process priority, namely,
a “fair share group priority.” Each process has a new field in its u area that points
to a fair share CPU usage field, shared by all processes in the fair share group.
The clock interrupt handler increments the fair share group CPU usage field for
the running process, just as it increments the CPU usage field of the running
process and decays the values of all fair share group CPU usage fields once a
second. When calculating process priorities, a new component of the calculation is
the group CPU usage, normalized according to the amount of CPU time allocated
to the fair share group. The more CPU time processes in a group received recently,
the higher the numerical value of the group CPU usage field is and, therefore, the
lower the priority for all the processes in the fair share group.

For example, consider thc three processes depicted in Figure 8.6 and suppose
that process A is in one group and processes B and C are in another. Assuming the
kernel schedules process A first, it will increment the CPU and group usage fields
for process A over the next second. On recomputation of process priorities at the
1-second mark, processes B and C have the highest priority; assume the kernel
schedules process B. During the next second, the CPU usage field of process B
goes up to 60, as does the group usage field for processes B and C. Hence, on
recomputation of process priorities at the 2-second mark, process C will have
priority 75 (compare to Figure 8.4), and the kernel will schedule process A, with
priority 74. The figure shows how the pattern repeats: the kernel schedules the
processes in the order A, B, A, C, A, B, and so on.
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Figure 8.6. Example of Fair Share Scheduler — Three Processes, Two Groups

8.1.6 Real-Time Processing

Real-time processing implies the capability to provide immediate response to
specific external events and, hence, to schedule particular processes to run within a
specified time limit after occurrence of an event. For example, a computer may
monitor the life-support systems of hospital patients to take instant action on a
change in status of a patient. Processes such as text editors are not considered
real-time processes: It is desirable that response to the user be quick, but it is not
that critical that a user cannot wait a few extra seconds (although the user may
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have other ideas). The scheduler algorithms described above were designed for use
in a time-sharing environment and are inappropriate in a real-time environment,
because they cannot guarantee that the kernel can schedule a particular process
within a fixed time limit. Another impediment to the support of real-time
processing is that the kernel is nonpreemptive; the kernel cannot schedule a real-
time process in user mode if it is currently executing another process in kernel
mode, unless major changes are made. Currently, system programmers must insert
real-time processes into the kernel to achieve real-time response. A true solution to
the problem must allow real-time processes to exist dynamically (that is, not be
hard-coded in the kernel), providing them with a mechanism to inform the kernel
of their real-time constraints. No standard UNIX system has this capability today.

8.2 SYSTEM CALLS FOR TIME

There are several time-related system calls, stime, time, times, and alarm. The
first two deal with global system time, and the latter two deal with time for
individual processes.

Stime allows the superuser to set a global kernel variable to a value that gives
the current time:

stime(pvalue);

where pvalue points to a long integer that gives the time as measured in seconds
from midnight before (00:00:00) January 1, 1970, GMT. The clock interrupt
handler increments the kernel variable once a second. 7Time retrieves the time as
set by stime:

time(tloc);
where tloc points to a location in the user process for the return value. Time
returns this value from the system call, too. Commands such as date use time to
determine the current time.

Times retrieves the cumulative times that the calling process spent executing in

user mode and kernel mode and the cumulative times that all zombi¢ children had
executed in user mode and kernel mode. The syntax for the callis

times(tbuffer)
struct tms *tbuffer;

where the structure tms contains the retrieved times and is defined by
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{

)

{

#ificlude <sys/types.h>
#include <sys/times.h>
extern long timesO;

mainQ

int i;

/* tms is data structure containing the 4 time elements */
struct tms pbl, pb2;

long ptl, pt2;

pt1 = times(&pb1);
for i=0; i <10; i++)
if (fork(Q) == 0)
child();

for i=0; i <10; i+t+)
wait((int *) 0);

pt2 = times(&pb2);

printf("parent real %u user %u sys %u cuser %u csys %u\n", ,
pt2 — ptl, pb2.tms_utime — pbl.tms_utime, pb2.tms_stime — pbl.tms_stime,
pb2.tms_cutime — pbl.tms_cutime, pb2.tms_cstime — pbl.tms_cstime);

child(n)

int n;

int i;
struct tms cbl, cb2;
long t1,t2;

tl = times(&cbl);
for i =0; i <10000; i++)

t2 = times(&cb2);

printf("child %d: real %u user %u sys %u\n", n, t2 — ti, )
cb2.tms_utime — cbl.tms_utime, cb2.tms_stime — cbl.tms_stime);

exitQ; - '

Figure 8.7. Program Using Times

struct tms {
/* time_t is the data structure for time */
time_t tms_utime; /* user time of process */
time_t tms_stime; /* kernel time of process */
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time_t tms_cutime; /* user time of children */
time_t tms_cstime /* kernel time of children */

};

Times returns the elapsed time “from an arbitrary point in the past,” usually the
time of system boot.

In the program in Figure 8.7, a process creates 10 child processes, and each
child loops 10,000 times. The parent process calls times before creating the
children and after they all exit, and the child processes call times before and after
their loops. One would naively expect the parent child user and child system times
to equal the respective sums of the child processes’ user and system times, and the
parent real time to equal the sum of the child processes’ real time. However, the
child times do not include time spent in the fork and exit system calls, and all
times can be distorted by time spent handling interrupts or doing context switches.

User processes can schedule alarm signals using the alarm system call. For
example, the program in Figure 8.8 checks the access time of a file every minute
and prints a message if the file had been accessed. To do so, it enters an infinite
loop: During each iteration, it calls stat to report the last time the file was accessed
and, if accessed during the last minute, prints a message. The process then calls
signal to catch alarm signals, calls alarm to schedule an alarm signal in 60 seconds,
and calls pause to suspend its activity until receipt of a signal. After 60 seconds,
the alarm signal goes off, the kernel sets up the process user stack to cali the signal
catcher function wakeup, the function returns to the position in the code after the
pause call, and the process executes the loop again.

The common factor in all the time related system calls is their reliance on the
system clock: the kernel manipulates various time counters when handling clock
interrupts and initiates appropriate action.

8.3 CLOCK
The functions of the clock interrupt handier are to

e restart the clock,

e schedule invocation of internal kernel functions based on internal timers,

e provide execution profiling capability for the kernel and for user processes,
e gather system and process accounting statistics,

o keep track of time,

e send alarm signals to processes on request,

o periodically wake up the swapper process (see the next chapter),

e control process scheduling.

Some operations are done every clock interrupt, whereas others are done after
several clock ticks. The clock handler runs with the processor execution level set
high, preventing other events (such as interrupts from peripheral devices) from
happening while the handler is active. The clock handler is therefore fast, so that
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#include <sys/types.h>
#include <sysﬁstat.h>
#include <sys/signal.h>

main(argc, argv)
int argc;
char *argvl];

{
extern unsigned alarm();
extern wakeup();
struct stat statbuf;
time_t axtime;
if (arge != 2)
{
printf("only 1 arg\n");
exitQ;
}
axtime = (time_t) 0;
for (;;)
{
/* find out file access time */
if (stat(argvll], &statbuf) === —1)
{
printf("file %s not there\n", argvi1]);
exit(;
}
if (axtime != statbuf.st_atime)
{
printf("file %s accessed\n", argv[1])
axtime = statbuf.st_atime;
}
signal SIGALRM, wakeup); /* reset for alarm */
alarm(60);
pause(); /* sleep until signal */
}
}
wakeup()
{
}

Figure 8.8. Program Using Alarm Call

261
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algorithm clock
input: none
output: none
{
réstart clock; /* so that it will interrupt again */
if (callout table not empty)
{
adjust callout times;
schedule callout function if time clapsed;
)
if (kernel profiling on)
note program counter at time of interrupt;
if (user profiling on)
note program counter at time of interrupt;
gather system statistics;
gather statistics per process;
adjust measure of process CPU utilitization;
if (1 second or more since last here and interrupt not in critical

region of code)
{

for (all processes in the system)
{

adjust alarm time if active;

adjust measure of CPU utilization;

if (process to execute in user mode)

adjust process priority;

)

wakeup swapper process is necessary;

Figure 8.9. Algorithm for the Clock Handler

the critical time periods when other interrupts are blocked is as small as possible.
Figure 8.9 shows the algorithm for handling clock interrupts. ‘

8.3.1 Restarting the Clock

When the clock interrupts the system, most machines require that the clock be
reprimed by software instructions so that it will interrupt the processor again after
a suitable interval. Such instructions are hardware dependent and will not be
discussed. ‘
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8.3.2 Internal System Timeouts

Some kernel operations, particularly device drivers and network protocols, require
invocation of kernel functions on a real-time basis. For instance, a process may put
a terminal into raw mode so that the kernel satisfies user read requests at fixed
intervals instead of waiting for the user to type a carriage return (see Section
10.3.3). The kernel stores the necessary information in the callout table (Figure
8.9), which consists of the function to be invoked when time expires, a parameter
for the function, and the time in clock ticks until the function should be called.

The user has no direct control over the entries in the callout table; various
kernel algorithms make entries as needed. The kernel sorts entries in the callout
table according to their respective “time to fire,” independent of the order they are
placed in the table. Because of the time ordering, the time field for each entry in
the callout table is stored as the amount of time to fire after the previous element
fires. The total time to fire for a given element in the table is the sum of the times
to fire of ali entries up to and including the element.

Function Time to Fire Function Time to Fire
a() -2 a() , )
b0 3 b0 3
c0 10 fO 2
c0 8
Before After

Figure 8.10. Callout Table and New Entry for f

Figure 8.10 shows an instance of the callout table before and after addition of a
new entry for the function f. (The negative time field for function a will be
explained shortly.) When making a new entry, the kernel finds the correct (timed)
position for the new entry and appropriately adjusts the time field of the entry
immediately after the new entry. In the figure, the kernel arranges to invoke
function f after 5 clock ticks: it creates an entry for f after the entry for b with the
value of its time field 2 (the sum of the time fields for b and f is 5), and changes
the time field for ¢ to 8 (c will still fire in 13 clock ticks). Kernel implementations
can use a linked list for each entry of the callout table, or they can readjust
position of the entries when changing the table. The latter option is not that
expensive if the kernel does not use the callout table too much.
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At every clock interrupt, the clock handler checks if there are any entries in the
callout table and, if there are any, decrements the time field of: the first entry.
Because of the way the keinel keeps time in the callout table, decrementing the
time field for the first entry effectively decrements the time field for all entries in
the table. If the time field of the first entry in the list is less than or equal to 0,
then the specified function should be invoked. The clock handler does not invoke
the function directly so that it does not inadvertently block later clock interrupts:
The processor priority level is currently set to block out clock interrupts, but the
kernel has no idea how long the function will take to complete. If the function
were to last longer than a clock tick, the next clock interrupt (and all other
interrupts that occur) would be blocked. Instead, the clock handler typically
schedules the function by causing a “software interrupt,” sometimes called a
“programmed interrupt” because it is caused by execution of a particular machine
instruction. Because software interrupts are at a lower priority level than other
interrupts, they are blocked until the kernel finishes handling all other interrupts.
Many interrupts, including clock interrupts, could occur between the time the
kernel is ready to call a function in the callout table and the time the software
interrupt occurs and, therefore,the time field of the first callout entry can have a
negative value. When the software interrupt finally happens, the interrupt handler
removes entries from the callout table whose time fields have expired and calls the
appropriate function.

Since it is possible that the time field of the first entries in the callout table are
0 or negative, the clock handler must find the first entry whose time field is positive
and decrement it. In Figure 8.10 for example, the time field of the entry for
function @ is —2, meaning that the system took 2 clock interrupts after a was
eligible to be called. Assuming the entry for b was in the table 2 ticks ago, the
kernel skipped the entry for @ and decremented the time field for b.

8.3.3 Profiling

Kernel profiling gives a measure of how much time the system is executing in user
mode versus kernel mode, and how much time it spends executing individual
routines in the kernel. The kernel profile driver monitors the relative performance
of kernel modules by sampling system activity at the time of a clock interrupt. The
profile driver has a list of kernel addresses to sample, usually addresses of kernel
functions; a process had previously down-loaded these addresses by writing the
profile driver. If kernel profiling is enabled, the clock interrupt handler invokes the
interrupt handler of the profile driver, which determines whether the processor
mode at the time of the interrupt was user or kernel. If the mode was user, the
profiler increments a count for user execution, but if the mode was kernel, it
increments an internal counter corresponding to the program counter. User
processes can read the profile driver to obtain the kernel counts and do statistical
 measurements.
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Algorithm Address  Count
bread 100 S
breada 150 0
bwrite 200 0
brelse 300 2
getblk 400 1
user - 2

Figure 8.11. Sample Addresses of Kernel Algorithms

For example, Figure 8.11 shows hypothetical addresses of several kernel
routines. If the sequence of program counter values sampled over 10 clock
interrupts is 110, 330, 145, address in user space, 125, 440, 130, 320, address in
user space, and 104, the figure shows the counts the kernel would save. Examining
these figures, one would conclude that the system spends 20% of its time in user
mode and 50% of its time executing the kernel algorithm bread.

If kernel profiling is done for a long time period, the sampled pattern of
program counter values converges toward a true proportion of system usage.
However, the mechanism does not account for time spent executing the clock
handler and code that blocks out clock-level interrupts, because the clock cannot
interrupt such critical regions of code and therefore cannot invoke the profile
interrupt handler there. This is unfortunate since such critical regions of kernel
code are frequently those that are the most important to profile. Hence, results of
kernel profiling must be taken with a grain of salt. Weinberger [Weinberger 84]
describes a scheme for generating counters into basic blocks of code, such as the
body of “if-then” and “else” statements, to provide exact counts of how many times
they are executed. However, the method increases CPU time anywhere from 50%
to 200%, so its use as a permanent kernel profiling mechanism is not practical.

Users can profile execution of processes at user-level with the profil system call:

profil (buff, bufsize, offset, scale);

where buff is the address of an array in user space, bufsize is the size of the array,
offset is the virtual address of a user subroutine (usually, the first), and scale is a
factor that maps user virtual addresses into the array. The kernel treats scale as a
fixed-point binary fraction with the binary point at the extreme “left”: The
hexadecimal value Oxffff gives a one to one mapping of program counters to words
in buff, Ox7ffif maps pairs of program addresses into a single buff word, Ox3fff maps
groups of 4 program addresses into a single buff word, 2nd so on. The kernel stores
the system call parameters in the process u area. When the clock interrupts the
process while in user mode, the clock handler examines the user program counter at
the time of the interrupt, compares it to offset, and increments a location in buff
whose address is a function of bufsize and scale.
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#include <signal.h> \
int buffer{4096];
main()
{
int offset, endof, scale, eff, gee, text;
extern theend(), O, g0;
signal (SIGINT, theend);
endof = (int) theend;
offset = (int) main;
/* calculates number of words of program text */
text = (endof — offset + sizeof(int) — 1)/sizeof(int);
scale = OxfTff;
printf("offset %d endof %d text %d\n", offset, endof, text);
eff = (int) f;
gee = (int) g;
printf("f %d g %d fdiff %d gdiff %d\n", eff, gee, eff—offset, gee—offset);
profil (buffer, sizeof (int) *text, offset, scale);

for (;;)
{
f0;
g0;
)
f0
{
)
g0
{
)
theend )
{
int i;
for (i =0;" i < 4096; i++)
if (bufferlil)
printf("bufl%d] = %d\n", i, bufferlil);
exitQ);
}

Figure 8.12. Program Invoking Profil System Call

For example, consider the program in Figure 8.12, profiling execution of a
program that calls the two functions f and g successively in an infinite loop. The
process first invokes signal to arrange to call the function theend on occurrence of
an interrupt signal and then calculates the range of text addresses it wishes to
profile, extending from the address of the function main to the address of the
function theend, and, finally, invokes profil to inform the kernel that it wishes to
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offset 212 endof 440 text 57

f 416 g 428 fdiff 204 gdiff 216
bufl46] = 50

buf(48) = 8585216

bufl49] = 151

buf{51] = 12189799

buffs3] = 65

buf{54] = 10682455

bufl56] = 67

Figure 8.13. Sample Output for Profil Program

profile its execution. Running the program for about 10 seconds on a lightly loaded
AT&T 3B20 computer gave the output shown in Figure 8.13. The address of f'is
204 greater than the Oth profiling address; because the size of the text of fis 12
bytes and the size of an integer is 4 on an AT&T 3B20 computer, the addresses of
f map into buf entries 51, 52, and 353. Similarly, the addresses of g map into buf
entries 54, 55, and 56. The buf entries 46, 48, and 49 are for addresses in the loop
in function main. In typical usage, the range of addresses to be profiled is
determined by examination of the text addresses in the symbol table of the program
being profiled. Users are discouraged from using the profil call directly because it
is complicated; instead, an option on the C compiler directs the compiler to
generate code to profile processes.

8.3.4 Accounting and Statistics

When the clock interrupts the system, the system may be executing in kernel mode,
executing in user mode, or idle (not executing any processes). It is idle if all
processes are sleeping, awaiting the occurrence of an event. The kernel keeps
internal counters for each processor state and adjusts them during each clock
interrupt, noting the current mode of the machine. User processes can later
analyze the statistics gathered in the kernel.

Every process has two fields in its u area to keep a record of elapsed kernel and
user time. When handling clock interrupts, the kernel updates the appropriate field
for the executing process, depending on whether the process was executing in kernel
mode or in user mode. Parent processes gather statistics for their child processes in
the wait system call when accumulating execution statistics for exiting child
processes. . -

Every process has one field in its u area for the kernel to log its memory usage.
When the clock interrupts a running process, the kernel calculates the total memory
used by a process as a function of its private memory regions and its proportional
usage of shared memory regions. For example, if a process shares a text region of
size SOK bytes with four other processes and uses data and stack regions of size
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25K and 40K bytes, respectively, the kernel charges the process for 75K bytes
(50K/5 + 25K + 40K). For a paging system, it calculates the memory usage by
counting the number of valid pages in each region. Thus, if the interrupted process
uses two private regions and shares another region with another process, the kernel
charges it for the number of valid pages in the private regions plus half the number
of valid pages in the shared region. The kernel writes the information in an
accounting record when the process exits. and the information can be used for
customer billing.

8.3.5 Keeping Time

The kernel increments a timer variable at every clock interrupt, keeping time in
clock ticks from the time the system was booted. The kernel uses the timer
variable to return a time value for the time system call, and to calculate the total
(real time) execution time of a process. The kernel saves the process start time in
its u area when a process is created in the fork system call, and it subtracts that
value from the current time when the process exits, giving the real execution time
of the process. Another timer variable, set by the stime system call and updated
once a second, keeps track of calendar time.

8.4 SUMMARY

This chapter has described the basic algorithm for process scheduling on the UNIX
system. The kernel associates a scheduling priority with every process in the
system, assigning the value when a process goes to sleep or, periodically, in the
clock interrupt handler. The priority assigned when a process goes to sleep is a
fixed value, dependent on the kernel algorithm the process was executing. The
priority assigned in the clock handler (or when a process returns from kernel mode
to user mode) depends on how much time the process has recently used the CPU:
It receives a lower priority if it has used the CPU recently and a higher priority,
otherwise. The nice system call allows a process to adjust one parameter used in
computation of process priority.

This chapter also described system calls dealing with time: setting and
retrieving kernel time, retrieving process execution times, and setting process alarm
signals. Finally, it described the functions of the clock interrupt handler, which
keeps track of system time, manages the callout table, gathers statistics, and
arranges for invocation of the process scheduler, process swapper, and page stealer.
The swapper and page stealer are the topics of the next chapter.

8.5 EXERCISES

1. In assigning priorities when a process goes to sleep, the kernel assigns a higher priority
to a process waiting for a locked inode than to a process waiting for a locked buffer.
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Similarly, it assigns higher priority to processes waiting to read terminal input than to
processes waiting to write terminal output. Justify both cases.

The algorithm for the clock interrupt handler recalculates process priorities and
reschedules processes in 1-second intervals. Discuss an algorithm that dynamically
changes the interval depending on system load. Is the gain worth the added
complexity?

The Sixth Edition of the UNIX system uses the following formula to adjust the recent
CPU usage of a process:

decay(CPU) = max(threshold priority, CPU = 10);
and the Seventh Edition uses the formula:
decay(CPU) = 8 * CPU;
Both systems calculate process priority by the formula
priority = CPU/16 + (base level priority);

Try the example in Figure 8.4 using these decay functions.

Repeat the example in Figure 8.4 with seven processes instead of three. Repeat the
example assuming there are 100 clock interrupts per second instead of 60. Comment.
Design a scheme such that the system puts a time limit on how long a process
executes, forcing it to exit if it exceeds the time limit. How should the user distinguish
such processes from processes that should run for ever? If the only requirement was
to run such a scheme from the shell, what would have to be done?

When a process executes the wait system call and finds a zombie process, the kernel
adds the child’s CPU usage field to the parent’s. What is the rationale for penalizing
the parent?

The command nice causes the subsequent command to be invoked with the given nice
value, as in

nice 6 nroff —=mm big_memo > output

Write C code for the nice command.

Trace the scheduling of the processes in Figure 8.4 given that the nice value of process
A is S or —5.

Implement a systein call, renice x y, where x is a process ID (of an active process)
and y is the value that its nice value should take.

Reconsider the example in Figure 8.6 for the fair share scheduler. Suppose the group
containing process A pays for 33% of the CPU and the group containing processes B
and C pays for 66% of the CPU time. What should the sequence of scheduled
processes look like? Generalize the computation of process priorities so that it
normalizes the value of the group CPU usage field.

Implement the command date: with no arguments, the command prints the system’s
opinion of the current date; using a parameter. as in

date mmddhhmmyy

a (super) user can set the system’s opinion of the current date to the corresponding
month, day, year, hour, and minute. For example,

date 0911205084
sets the system date to September 11, 1984, 8:50 p.m.
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Programs can use a user-level sieep function
sleep(seconds);

to suspend execution for the indicated number of seconds. Implement the function
using the alarm and pause system calls. What should happen if the process had called
alarm before calling sleep? Consider two possibilities: that the previous alarm call
would expire while the process was sleeping, and that it would expire after the sleep
completed.

Refering to the last problem, the kernel could do a context switch between the alarm
and pause calls in the sleep function, and the process could receive the alarm signal
before it calls pause. What would happen? How can this race condition be fixed?



MEMORY MANAGEMENT
POLICIES

The CPU scheduling algorithm described in the last chapter is strongly influenced
by memory management policies. At least part of a process must be contained ir
primary memory to run; the CPU cannot execute a process that exists entirely in
secondary memory. However, primary memory is a precious resource that
frequently cannot contain all active processes in the system. For instance, if a
system contains 8 megabytes of primary memory, nine 1-megabyte processes will
not fit there simultaneously. The memory management subsystem decides which
processes should reside (at least partially) in main memory, and manages the parts
of the virtual address space of a process that are not core resident. It monitors the
amount of available primary memory and may periodically write processes to a
secondary memory device called the swap device to provide more space in primary
memory. At a later time, the kernel reads the data from the swap device back to
main memory.

Histarically, UNIX systems transferred entire processes between primary
memory and the swap device, but did not transfer parts of a process independently,
except for shared text. Such a memory management policy is called swapping. It
maede seasc to implement such a policy on the PDP 11, where the maximum
process size was 64K bytes. For this policy, the size of a process is bounded by the
amount of physical memory available on a system. The BSD system (release 4.0)
was the first major implementation of a demand paging policy, transferring
memory pages instead of processes to and from a secondary device; recent releases

2N
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of UNIX System V also support demand paging. The entire process does not have
to reside in main memory to execute, and the kernel loads pages for a process on
demand when the process references the pages. The advantage of a demand paging
policy is that it permits greater flexibility in mapping the virtual address space of a
process into the physical memory of a machine, usually allowing the size of a
process to be greater than the amount of available physical memory and allowing
more processes to fit simultaneously in main memory. The advantage of a
swapping policy is that it is easier to implement and results in less system overhead.
This chapter discusses the two memory management policies, swapping and paging.

9.1 SWAPPING

There are three parts to the description of the swapping algorithm: managing
space on the swap device, swapping processes out of main memory, and swapping
processes into main memory.

9.1.1 Alocation of Swap Space

The swap device is a block device in a configurable section of a disk. Whereas the
kernel allocates space for files one block at a time, it allocates space on the swap
device in groups of contiguous blocks. Space allocated for files is used staiically;
since it will exist for a long time, the allocation scheme is flexible to reduce the
amount of fragmentation and, hence, unallocatable space in the file system. But
the allocation of space on the swap device is transitory, depending on the pattern of
process scheduling. A process that resides on the swap device will eventually
migrate back to main memory, freeing the space it had occupied on the swap
device. Since speed is critical and the system can do I/0 faster in one multiblock
operation than in several single block operations, the kernel allocates contiguous
space on the swap device without regard for fragmentation.

Because the allocation scheme for the swap device differs from the allocation
scheme for file systemns, the data structures that catalog free space differ tooLThe
kernel maintains free space for file systems in a linked list of free blocks, accessible
from the file system super block, but it maintains the free space for the swap device
in an in-core table, called a mapj Maps, used for other resources besides the swap
device (some device drivers, for example), allow a first-fit allocation of contiguous

“blocks” of a resource.

\/ & map is an array where each entry consists of an address of an allocatable
resource and the number of resource units available there; \the kernel interprets the
address and units according to the type of map. Initially,2 map contains one entry
that indicates the address and the total number of resources. For instance, the
kernel treats each unit of the swap map as a group of disk blocks, and it treats the
address as a block offset from the beginning of the swap area. Figure 9.1
illustrates an initial swap map that consists of 10,000 blocks starting at address 1.
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Address Units

1 10000

Figure 9.1. Initial Swap Map

algorithm malloc /* algorithm to allocate map space */
input: (1) map address /* indicates which map to use */
(2) requested number of units
output: address, if successful
0, otherwise
{
for (every map entry)
if (current map entry can fit requested units)
{
if (requested units == number of units in entry)
delete entry from map;
else
adjust start address of entry;
return (original address of entry);
}
)
return(0);
)

Figure 9.2. Algorithm for Allocating Space from Maps

As the kernel allocates and frees resources, it updates the map so that it continues
to contain accurate information about free resources.

Figure 9.2 gives the algorithm malloc for allocating space from maps. The
kernel searches the map for the first entry that contains enough space to
accommodate the request. If the request consumes all the resources of the map
entry, the kernel removes the entry from the array and compresses the map (that
is, the map has one fewer entries). Otherwise, it adjusts the address and unit fields
of the entry according to the amount of resources allocated. Figure 9.3 shows the
sequence of swap map configurations after allocating 100 units, 50 units, then 100
units again. The kernel adjusts the swap map to show that the first 250 units have
been allocated, and that it now contains 9750 free units starting at address 251.

When freeing resources, the kernel finds their proper position in the map by
address. Three cases are possible:
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Address Units Address Units
1 10000 101 9900
(a) (b)
Address Units Address Units
151 9850 251 9750
(© ()]

Figure 9.3, Allocating Swap Space

1. The freed resources completely fill a hole in the map: they are contiguous to
the entries whose addresses would immediately precede them and follow them
in the map. In this case, the kernel combines the newly freed resources and
the existing (two) entries into one entry in the map.

2. The freed resources partially fill a hole in the map. If the address of the
freed resources are contiguous with the map entry that would immediately
precede them or with the entry that would immediately follow them (but not
both), the kernel adjusts the address and units fields of the appropriate entry
to account for the resources just freed. The number of entries in the map
remains the same.

3. The freed resources partially fill a hole but are not contiguous to any
resources in the map. The kernel creates a new entry for the map and inserts
it in the proper position.

Returning to the previous example, if the kernel frees 50 units of the swap
resource starting at address 101, the swap map contains a new entry for the freed
resources, since the returned resources are not contiguous to existing entries in the
map. If the kernel then frees 100 units of the swap resource starting at address 1,
it adjusts the first entry of the swap map since the freed resources are contiguous to
those in the first entry. Figure 9.4 shows the sequence of swap map configurations
corresponding to these events.

Suppose the kernel now requests 200 units of swap space. Because the first
entry in the swap map only contains 150 units, the kernel satisfies the request from
the second entry (see Figure 9.5). Finally, suppose the kernel frees 350 units of
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Addresé Units Address Units
251 9750 101 50
251 9750
(a)
(b)

Address Units

1 150

251 9750

©

Figure 9.4. Freeing Swap Space

Address Units Address Units

1 150 7 1 150

251 9750 451 9550
(a) (b)

Figure 9.5. Allocating Swap Space from the Second Entry in the Map

swap space starting at agdrcss 151. Although the 350 units were allocated
separately, there is no reason the kernel could not free them at once. (It does not
do so for swap space, since reguests for swap space are independent of each other.)
The kernel realizes that the frged resources fit neatly into the hole between the first
and second entries in the swap map and creates one entry for the former two (and
the freed resources).

Traditional implementations of the UNIX system use one swap device, but the
latest implementations of System V allow multiple swap devices. The kernel
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Layout of Virtual Addresses

Virtual, Physical Addresses Swap Device

Text | 0 278K-|----------==-- 6841 - >
1K 432K-|- mc—mmmmm e e e ] o
empty > |
AR ,—”/’,,"/’ =z
Data |64K 5731(—""/,/"/_,—"' .,
65K 647K~  _.-=7 6901
66K 595K-I""
empty //
Stack [128K 401K-[
empty

Figure 9.6. Mapping Process Space onto the Swap Device

Figure 9.6 gives an example of mapping the in-core image of a process onto a
swap device.! The process contains three regions for text, data, and stack: the text
region ends at virtual address 2K, and the data region starts at virtual address 64K,
leaving a gap of 62K bytes in the virtual address space. When the kerne! swaps the
process out, it swaps the pages for virtual addresses 0, 1K, 64K, 65K, 66K, and
128K it does not allocate swap space for the empty 62K bytes between the text
and data regions or the empty 61K bytes between the data and stack regions but
fills the swap space contiguously. Whsn the kernel swaps the process back in, it
knows that the prpcess h%s a 62K-byte-hole by consulting the process memory map,
and it assigns pbysical memory accordingly. Figure 9.7 demonstrates this case.
Comparison of Figures 9.6 and 9.7 shows that the physical addresses occupied by

1. For simplicity, the virtual addmss space of a process is depicted as a linear array of page table
entries in this and in later figures, disregarding the fact that each region usually has a separate page
table.
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Layout of Virtual Addresses

Virtual, Physical Addresses Swap Device

Text

Data

0 401K
1K 370K

empty

64K 788K4

65K 492K4- - 6994~
66K 647K4 " -7
empty -7

128K 955K4
empty

Stack

Figure 9.7. Swapping a Process into Memory

the process before and after the swap are not the same; however, the process does
not notice a change at user-level, because the contents of its virtual space are the
same.

Theoretically, all memory space occupied by a process, including its u area and
kernel stack, is eligible to be swapped out, although the kernel may temporarily
lock a region into memory while a sensitive operation is underway. Practically,
however, kernel implementations do not swap the u area if the u area contains the
address translation tables for the process. The implementation also dictates
whether a process can swap itself out or whether it must request another process to
swap it out (see exercise 9.4).

9.1.2.1 Fork Swap

The description of the fork system call (Section 7.1) assumed that the parent
process found enough memory to create the child context. Otherwise, the kernel
swaps the process out without freeing the memory occupied by the in-core (parent)
copy. When the swap is complete, the child process exists on the swap device; the
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parent places the child in the “ready-to-run” state (sce Figﬁrc '6.1) and returns to
user mode. Since the child is in the “ready-to-run” staté, the swapper will
eventually swap it into memory, where the kernel will schedule it; the child will
complete its part of the fork system call and return to user mode. ‘

Original Layout Expanded Layout

Virtual, Physical Addresses Virtual, Physical Addresses Swap Device
Text | 0 278K 0 278Kd------ 6844 - >
1K 432K 1X 432K -c oo - - -
empty empty =z
‘ ' oy
Lz
Data |64K 573K | 64K 573K"/,—’/," )
65K 647K 65K 647K-I" -7 690 o,
66K 595K 66K 595K-|"” 691' ‘/'
empty empty ’," /’
Stack [128K 401K 128K 401K’ 7
empty New Page 129K - - [
) empty

Figure 9.8. Adjusting Memory Map for Expansion Swap

9.1.2.2 Expansion Swap

If a process requires more physical memory than is currently allocated to it, either
as a result of user stack growth or invocation of the brk system call and if it needs
more memory than is currently available, the kernel does an expansion swap of the
process. It reserves enough space on the swap device to contain the memory space
of the process, including the newly requested space. Then, it adjusts the address
translation mapping of the process to account for the new virtual memory but does
not assign physical memory (since none was available). Finally, it swaps the
process out in a normal swapping operation, zeroing out the newly allocated space
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on the swap device (see Figure 9.8). When the kernel later swaps the process into
memory, it will allocate physical memory according to the new (augmented size)
address translation map. When the process resumes execution, it will have enough
memory.

9.1.3 Swapping Processes In

Process 0, the swapper, is the only process that swaps processes into memory from
swap devices. At the conclusion of system initialization, the swapper goes into an
infinite loop, where its only task is to do process swapping, as mentioned in Section
7.9. It attempts to swap processes in from the swap device, and it swaps processes
out if it needs space in main memory. The swapper sleeps if there is no work for it
to do (for example, if there are no processes to swap in) or if it is unable to do any
work (there are no processes eligible to swap out); the kernel periodically wakes it
up, as will be seen. The kernel schedules the swapper (o execute just as it

schedules other processes, albeit at higher priority, but the swapper executes only in
" kernel mode. The swapper makes no system calls but uses internal kernel functions
to do swapping; it is the archetype of all kernel processes.

As mentioned briefly in Chapter 8, the clock handler measures the time that
each process has been in core or swapped out. When the swapper wakes up to
swap processes in, it examines all processes that are in the state “ready to run but
swapped out” and ‘selects one that has been swapped out the longest (see Figure
9.9). If there is enough free memory available, the swapper swaps the process in,
reversing the operation done for swapping out: It allocates physical memory, reads
the process from the swap device, and frees the swap space.

If the swapper successfully swaps in a process, it searches the set of “ready-to-
run but swapped out” processes for others to swap in and repeats the above
procedure. One of the following situations eventually arises:

¢ No “ready-to-run” processes exist on the swap device: The swapper goes to
sleep until a process on the swap device wakes up or until the kernel swaps out
a process that is “ready to run.” (Recall the state diagram in Figure 6.1.)

® The swapper finds an eligible process to swap in but the system does not contain
enough memory: The swapper attempts to swap another process out and, if
successful, restarts the swapping algorithm, searching for a process to swap in.

If the swapper must swap a process out, it examines every process in memory:
Zombie processes do not get swapped out, because they do not take up any physical
memory; processes locked in memory, doing region operations, for example, are also
not swapped out. The kernel swaps out sleeping processes rather than those “ready
to run,” because “ready-to-run” processes have a greater chance of being scheduled
soon. The choice of which sleeping process to swap out is a function of the process
priority and the time the process has been in memory. If there are no sleeping
processes in memory, the choice of which “ready-to-run” process to swap out is a
function of the process nice value and the time the process has been in memory.
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swapper sleeps on the event that it wants to swap a process into memory but cannot
find room for it. The clock will awaken the swapper once a second in that state.
The kernel also awakens the swapper if another process goes to sleep, since it may
be more eligible for swapping out than the processes previously considered by the
swapper. If the swapper swaps out a process or if it sleeps because it could not
swap out a process, it will resume execution at the beginning of the swapping
algorithm, attempting to swap in eligible processes.

Figure 9.10 depicts five processes and the time they spend in memory or on the
swap device as they go through a sequence of swapping operations. For simplicity,
assume that all processes are CPU intensive and that they do not make any system
calls; hence, a context switch happens only as a result of clock interrupts at 1-
second intervals. The swapper runs at highest scheduling priority, so it always runs
briefly at 1-second intervals if it has work to do. Further, assume that the
processes are the same size and the system can contain at most two processes
simultaneously in main memory. Initially, processes A and B are in main memory
and the other processes are swapped out. The swapper cannot swap any processes
during the first 2 seconds, because none have been in memory or on the swap device
for 2 seconds (the residency requirement), but at the 2-second mark, it swaps out
processes A and B and swaps in processes C and D. It attempts to swap in process
E, too, but fails because there is no more room in main memory. At the 3 second
mark, process E is eligible for swapping because it has been on the swap device for
3 seconds, but the swapper cannot swap processes out of main memory because
their residency time is under 2 seconds. At the 4-second mark, the swapper swaps
out processes C and D and swaps in processes E and A.

The swapper chooses processes to swap in based on the amount of time the
processes had been swapped out. Another criterion could have been to swap in the
highest-priority process that is ready to run, since such processes deserve a better
chance to execute. It has been demonstrated that such a policy results in “slightly”
better throughput under heavy system load (see [Peachey 84]).

The algorithm for choosing a process to swap out to make room in memory has
more serious flaws, however. First, the swapper swaps out a process based on its
priority, memory-residence time, and nice value. Although it swaps out a process
only to make room for a process being swapped in, it may swap out a process that
does not provide enough memory for the incoming process. For instance, if the
swapper attempts to swap in a process that occupies 1 megabyte of memory and the
system contains no free memory, it is futile to swap out a process that occupies only
2K bytes of memory. An alternative strategy would be to swap out groups of

2. The Version 6 implementation of the UNIX system did not swap a process out to make room for an
incoining process until the incoming process had been disk resident for 3 seconds. The outgoing
procers had to reside in memory at least 2 seconds. The choice of the time interval cuts down on
thrashing and increases system throughput.
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Figure 9.10. Sequence of Swapping Operations
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tigure 9.11. Thrashing due to Swapping

processes only if they provide enough memory for the incoming process
Fxperiments using a PDP 11/23 computer have shown that such a strategy can
increase system throughput by about 10 percent under heavy loads (see [Peachey
84)).
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Second, i the swapper sleeps because i oould aot find enough memory 1o swap
in a process, it searches again for a process t¢ swap in althcugh it had sroviously
chosen onc. The reason is that other swapped processes may have awakened
meantime and they may be ore eligibie for swappng in than the noos
choser: process. But that is small solace 1¢ ihe origiral process stul irviy
swapped in. In some implementations, the swapper tries to swap out man
processes to make room for the big process to be swapped in before searciing
another process to swap in; this is the revision in the swapper algorithm siwewn bo
the comments in Figure 9.9. ,

Third, if the swapper chooses a “ready-to-run” process to swap out, it 18 ,oiiinie
that the process had not executed since it was previously swapped in. Figare
depicts such a case, where the kernel swaps in process i at the Z-second ima
schedules process C, and then swaps out process i ot the 3-second mark in ©a
process E (because of the interaction of the nice value) even though process T rad
never run. Such thrashing is clearly undesirable.

One final danger is worthy of mention. If the swapper attempts to swup cut a
process but cannot find space on the swap device, a system deadlock couid arise it
the following four conditions are met: All processes in main memory are asizep, =il
“ready-to-run” processes are swapped out, there is no room on the swap device {or
new processes, and there is no room in main memory for iincoming procssses.
Exercise 9.5 explores this situation. Interest in fixing problems with the swapper
has declined in recent years as demand paging algorithms have been impicrentod
for UNIX systems.

3rool

9.2 DEMAND PAGING

Machines whose memory architecture is based on pages and whose TP
restartable instructions® can support a kernel that implemenis a demand ;
algorithm, swapping pages of memory between muain memory and a swap <
Demand paging systems free processes from size limitaticns otherwise inpos
the amount of physical memory available on a machiie. For instance, m
that contain 1 or 2 megabytes of physical memory can crecute 23
sizes are 4 or S megabytes. The kernel still immposes a Limit on the v
process, dependent on the amount of virtual memory the maching : “.
Since a process may not fit into physical memory, the kernel must load il
portions into memory dynamically and execute it even though other parts are not
loaded. Demand paging is transparent to user programs except for the virtual size

3. If a machine executes “part” of an instruction and incurs a page fault, the CPU must 1estait the
instruction after handling the fault, because intermediate computations done before the rage fault
may have been lost.
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permissible to a process

Processes tend to execute instructions in small portions of their text space, such
as program loops and frequently called subroutines, and their data references tend
to cluster in small subsets of the total data space of the process. This is known as
the principle of “locality.” Denning {Denning 68] formalized the notion of the
working set of a process, which is the set of pages that the process has referenced
in its last n memory references; the number » is called the window of the working
set. Because the working set is a fraction of the entire process, more processes may
fit sinultaneously into main memory than in a swapping system, potentially
increasing system throughput because of reduced swapping traffic. When a process
addresses a page that is not in its working set, it incurs a page fault; in handling
the fault, the kernel updates the working set, reading in pages from a secondary
device if necessary.

Figure 9.12 shows a sequence of page references a process could make,
depicting the working sets for various window sizes and following a least recently
used replacement policy. As a process executes, its working set changes, depending
on the pattern of memory references the process makes; a larger window size yields
a larger working set, implying that a process will not fault as often. It is
impractical to implement a pure working set model, because it is expensive to
remember the order of page references. Instead, systems approximate a working
set model by setting a reference bit whenever a process accesses a page and by
sampling memory references periodically: If a page was recently referenced, it is
part of a working set; otherwise, it “ages” in memory until it is eligible for
swapping.

When a process accesses a page that is not part of its working set, it incurs a
validity page fault. The kernel suspends execution of the process until it reads the’
page into memory and makes it accessible to the process. When the page is loadsd
in memory, the process restarts the instruction it was executing when it incurred
the fault. Thus, the implementation of a paging subsystem has two parts:
swapping rarely used pages to a swapping device and handling page faults. This
general description of paging schemes extends to non-UNIX systems, too. The rest
of this chapter examines the paging scheme for UNIX System V in detail.

9.2.1 Data Structures for Demand Paging

The kernel contains 4 major data structures to support low-level memory
management functions and demand paging: page table entries, disk block
descriptors, the page frame data table (called pfdata for short), and the swap-use
table. The kernel allocates space for the pfdata table once for the lifetime of the
system but allocates memory pages for the other structures dynamically.

Recall from Chapter 6 that a region contains page tables to access physical
memory. Each entry of a page table (Figure 9.13) contains the physical address of
the page, protection bits indicating whether processes can read, write or execute
from the page, and the following bit fields to support demand paging:
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Sequence of Working Sets Window Sizes

Page References 2 3 4 5
24 24 24 24 24
15 1524 15 24 1524 1524
18 18 15 118 1524 18 15 24 18 15 24
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24 2423 (242318 :
17 1724 1172423 17 24:23 181 1724 23 18 15
18 1817 |18 17 24 ‘ :
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15 1517 1151718} 151718 24
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18 1824 (1824 17

Figure 9.12. Working Set of a Process

Valid
Reference
Modify

Copy on write
Age

The kernel turns on the valid bit to indicate that the contents of a page are legal,
but the page reference is not necessarily illegal if the valid bit is off, as will be
seen. The reference bit indicates whether a process recently referenced a page, and
the modify bit indicates whether a process recently modified the contents of a page.
The copy on write bit, used in the fork system call, indicates that the kernel must
create a new copy of the page when a process modifies its contents. Finally, the
kernel manipulates the age bits to indicate how long a page has been a member of
the working set of a process. Assume the kernel manipulates the valid. copy on
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wiiw, 2nd age bus, and the hardware sets the reference and modify bits of the page
iabie 2ntry; Section %.2.4 will consider hardware that does not have these
capabilhities.

e s o e iy

Hegon |/
- 4

A Page Table Entries | Disk Block Descriptors -

Page Table Entry
e e FMTW ..i
Page (Fhysical) Address tAge l}il#)/Wrt Mod| Ref | Val éPmt

[ i

5 L] _J L]

Type (swap, file,
Dev Block Num fill 0, demand 4l

St e e e s et it e i 1 e P A T e i 1 T i .

Figure 9.13. Page Table Entries and Disk Block Descriptors

ach page table entry is associated with a disk block descriptor, which describes
the disk copy of the virtuai page (Figure 9.13). Processes that share a region
therefore access common page table entries and disk block descriptors. The
contents of a virtual page are either in a particular block on a swap device, in an
executable file, or not on a swap device. If the page is on a swap device, the disk
block descriptor contains the logical device number and block number containing
the page contents. If the page is contained in an executable file, the disk block
‘1oseriptor contains the logical block number in the file tl:.t contains the page; the
torael can quickly map this number into its disk address. The disk block descriptor
Alie indicates twn spaciz) conditions set during exec: that a page is “dercand Hil”
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or “demand zero.” Section 9.2.1.2 will explain these conditions.
The pfdata table describes each page of physical memory and is indexcd by
page numbe . The fields of an entry are

o The page state, indicating that the page is on a swap device or executable file,
that DMA is currently underway for the page (reading data from a swap
device), or that the page can be reassigned.

e The number of processes that reference the page. The reference count equals
the number of valid page table entries that reference the page. It may differ
from the number of processes that share regions containing the page, as will be
described below when reconsidering the algorithm for fork.

e The iogical device {swap or file system) and block number that contains a copy
of the page.

o Pointers to other pfdata table entries on a list of free pages and on a hash queue
of pages.

The kernel links entries of the pfdata table onto a free list and a hashed list,
analogous to the linked lists of the buffer cache. The free list is 4 cache of pages
that are available for reassignment, but a process may fault on an address and sull
find the corresponding page intact on the free-list. The free list thus allows the
kerne! to avoid unnecessary read operations from the swap device. The kernel
allocates new pages from the list in least recently used order. The kernel alse
hashes the pfdata tabic entry according to its {swap) device nvmber and biock
number. Thus, givern a device and block number, the kernel can quickly locate a
page if it is in memory. To assign a physical page to a region, the kernel removes a
free page frame entry from the head of the free list, updates its swap device and
block numbers, and puts it onto the correct hash queue.

The swap-use table contains an entry for every page on a swap device. The
entry consists of a reference count of how many page table entries point to 2 page
on a swap device.

Figure 9.14 shows the relationship between page table entries, disk block
descriptors, pfdata table entries, and the swap-use count table. Virtual address
1493K of 'a process maps into a page table entry that points to physical page 794;
the disk block descriptor for the page table entry shows that a copy of the page
exists at disk block 2743 on swap device 1. The pfdata table entry for physical
page 794 also shows that a copy of the page exists at disk block 2743 on swap
device 1, and its in-core reference count is 1. Section 9.2.4.1 will explain why the
disk block number is duplicated in the pfdata table and the disk block descyipior.
The swap use count for the virtual page is |, meaning that one page tabic entry
points to the swap copy.

9.2.1.1 Fork in a Paging System

As explained in Section 7.1, the kernel duplicates every regien of the parent pioaess
during the fork system call and attaches it to the child prooess. Trofitionalty, the
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Virtual Address | Page Table Entry Disk Block Descriptor

1493K Page No 794 Swap Dev 1 Block No 2743
. /

| Page Frame 794

Ref Cnt 1 Swap Use
Swap Dev 1 Ref Cnt 1
£

Block No 2743
N

Physical Page 794

Swap Device Block 2743

Figure 9.14. Relationship of Data Structures for Demand Paging

kernel of a swapping system makes a physical copy of the parent’s address space,
usuaily a wasteful operation, because processes often call exec soon after the fork
call and immediately free the memory just copied. On the System V paging
system, the kernel avoids copying the page by manipulating the region tables, page
table entries, and pfdata table entries: It simply increments the region reference
count of shared regions. For private regions such as data and stack, however, it
allocates a new region table entry and page table and then esamines each parent
page table entry: If a page is valid, it increments the reference count in the pfdata
table entry, indicating the number of processes that share the page via different
regions (as opposed to the number that share the page by sharing the region). If
the page exists on a swap device, it increments the swap-use table reference count
for the page.

The page can now be referenced through both regions, which share the page
until a process writes to it. The kernel then copies the page so that each region has
a private version. To do this, the kernel turns on the “copy on write” bit for every
page table entry in private regions of the parent and child processes during fork. If
either process writes the page, it incurs a protection fault, and in handling the fault,
the kernel makes a new copy of the page for the faulting process. The physical
copying of the page is thus deferred until a process really needs it.

Figure 9.15 shows the data structures when a process forks. The processes
share access to the page table of the shared text region T, so the region reference
count is 2 and the pfdata reference count for pages in the text region is 1. The
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Process P Process C
Per Process Per Process
Region Table Region Table
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Figure 9.15. A Page in a Process that Forks

kernel allocates a new child data region, CI, a copy of region Pl in the parent
process. The page table entries of the two regions are identical, as illustrated by
the entry for virtual address 97K. The page table entries point to pfdata table
entry 613, whose reference count is 2, indicating that two regions reference the
page.

The implementation of the fork system call in the BSD system makes a physical
copy of the pages of the parent process. Recognizing the performance improvement
gained by not having to do the copy, however, the BSD system also contains the
vfork system call, which assumes that a child process will immediately invoke exec
on return from the vfork call. Vfork does not copy page tables so it is faster than
the System V fork implementation. But the child process executes in the same
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physical address space as the parent process (until an exec or exit) and can thus
overwrite the parent’s data and stack. A dangerous situation could arise if a
programmer uses vfork incorrectly, so the onus for calling vfork lies with the
programmer. The difference between the System V approach and the BSD
approach is philosophical: Should the kernel hide idiosyncrasies of its
implementation from users, or should it allow sophisticated users the opportunity to
take advantage of the implementation to do a logical function more efficiently?

int global;
main()
{

int local;

local = 1;
if (vfork() == 0)
{

/* child */

global = 2; /* write parent data space */ '
local = 3; /* write parent stack */

_exitQ;

)
printf("global %d local %d\n", global, local);
}

Figure 9.16. Vfork and Corruption of Process Memory

For example, consider the program in Figure 9.16. After the vfork call, the
child process does not exec, but resets the yariables global and local and exits.*
The system guarantees that the parent process is suspended until the child process
execs or exits. When the parent process finally resumes execution, it finds that the
values of the two variables are not the same as they were before the vfork! More
spectacular effects can occur if the child process returns from the function that had
called vfork (see exercise 9.8).

4. The call to _exit is used, because exit “cleans up” the standard 1/O (user-level) data structures for
the parent and child processes, preventing the parent’s printf statement from working correctly —
another unfortunate side effect of vfork. ‘
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9.2.1.2 Exec in a Paging System .

When a process invokes the exec system call, the kernel reads the executable file
into memory from the file system, as described in Chapter 7. On a demand paged
system, however, the executable file may be too large to fit in the available main
memory. The kernel, therefore, does not preassign memory to the executable file
but “faults™ it in, assigning memory as needed. It first assigns the page tables and
disk block descriptors for the executable file, marking the page table entries
“demand fill” (for non-bss data) or “demand zero” (for bss data). Following a
variant of the read algorithm for reading the file into memory, the process incurs a
validity fault as it reads each page. The fault handler notes whether the page is
“demand fill,” meaning its contents will immediately be overwritten with the
contents of the executable file so it need not be cleared, or that it is “demand zero,”
meaning that its contents should be cleared. The description of the validity fault
handler in Section 9.2.3 will show how this is done. If the process cannot fit into
memory, the page-stealer process periodically swaps pages from memory, makmg
room for the incoming file.

There are obvious inefficiencies in this scheme. First, a process incurs a page
fault when reading each page of the executable file, even though it may never
access the page. Second, the page stealer may swap pages from memory before the
exec is done, resulting in two extra swap operations per page if the process needs
the page early. To make exec more efficient, the kernel can demand page directly
from the executable file if the data is properly aligned, as indicated by a special
magic number. However, use of standard algorithms (such as bmap, in Chapter 4)
to access a file would make it expensive to demand page from indirect blocks
because of the multiple buffer cache accesses necessary to read a block.
Furthermore, consistency problems could arise because bmap is not reentrant. The
kerne® sets various I/O parameters in the u area during the read system call. If a
process incurs a page fault during a read system call when attempting to copy data
to user space, it would overwrite these fields in the u area to read the page from the

file system. Therefore, the kernel cannot use the regular algorithms to fault in
- pages from the file system. The algorithms are, of course, reentrant in regular
cases, because each process has a separate u area and a process cannot
simultaneously execute multiple system calls.

To page directly from an executable file, the kernel finds all the disk block
numbers of the executable file when it does the exec and attaches the list to the file
inode. When setting up the page tables for such an; executable file, the kernel
marks the disk block descriptor w1th the logical block number (starting from block
0 in the file) contamltxg the pagc the ‘validity fault handler later uses this
information to load the page from the file. Figure 9.17 shows a typical
arrangement, where the disk block descriptor indicates that the page is at logical
block offset 84 in the file. The kernel follows the pointer from the region to the
inode and looks up the appropriate disk block numbeér (279). .
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Inode
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Figure 9.17. Mapping a File into a Region

9.2.2 The Page-Stealer Process

The page stealer is a kernel process that swaps out memory pages that are no
longer part of the working set of a process. The kernel creates the page stealer
during system initialization and invokes it throughout the lifetime of the system
when low on free pages. It examines every active, unlocked region, skipping locked
regions in the expectation' of examining them during its next pass through the
region list, and increments the age field of all valid pages. The kernel locks a
region when a process faults on a page in the region, so that the page stealer cannot
steal the page being faulted in.

There are two paging states for a page in memory: The page is aging and is not
yet eligible for swapping, or the page is eligible for swapping and is available for
reassignment to other virtual pages. The first state indicates that a process recently
accessed the page, and the page is therefore in its working set. Some machines set
a reference bit when they reference a page, but software methods can be substituted
if the hardware does not have this feature (Section 9.2.4). The page stealer turns
off the reference bit for such pages but remembers how many examinations have
passed since the page was last referenced. The first state thus consists of several
substates, corresponding to the number of passes the page (stealer makes before the
page is eligible for swapping (see Figure 9.18). When the number exceeds a
threshold value, the kernel puts the page into the second state, ready to be
swapped. The maximum period that a page can age before it is eligible to be
swapped is implementation dcpendcnt constrained by the number of bits available
in the page table entry.

Figure 9.19 depicts the interaction between processes accessing a page and
examinations by the page stealer. The page starts out in main memory, and the
figure shows the number of examinations by the page stealer between memory
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Figure 9.18. State Diagram for Page Aging

references. A process referenced the page after the second examination, dropping
its age to 0. Similarly, a process referenced the page again after one more
examination. Finally, the page stealer examined the page three times without an
intervening reference and swapped the page out.

If two or more processes share a region, they update the reference bits of the
same set of page table entries. Pages can thus be part of the working set of more
than one process, but that does not matter to the page stealer. If a page is part of
the working set of any process, it remains in memory; if it is not part of the
working set of any process, it is eligible for swapping. It does not matter if one
region has more pages in memory than others: the page stealer does not attempt to
swap out equal numbers of pages from all active regions.

The kernel wakes up the page stealer when the available free memory in the
system is below a low-water mark, and the page stealer swaps out pages until the
available free memory in the system exceeds a high-water mark. The use of high-
and low-water marks reduces thrashing: If the kernel were only to use one
threshold, it would swap out enough pages to get above the threshold (of free
pages), but as a result of faulting pages back into memory, the number would soon
drop below the threshold. The page stealer would effectively thrash about the
threshold. By swapping out pages until the number of free pages exceeds a high-
water mark, it takes longer until the number of free pages drops below the low-
water mark, so the page stealer does not run as often. Administrators can
configure the values of the high- and low-water marks for best performance.

When the page stealer decides to swap out a page, it considers whether a copy
of the page is on a swap device. There are three possibilities.
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Page State  Time (Last Reference)

In Memory 0
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Page Referenced
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Page Swapped Out
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Figure 3.19. Example of Aging a Page

1. If no copy of the page is on a swap device, the kernel “schedules” the page
for swapping: The page stealer places the page on a list of pages to be

swapped out and continues; the swap is logically complete. When the list of -

pages to be swapped reaches a limit (dependent on the capabilities of the disk
controller), the kernel writes the pages to the swap device.

2. If a copy of the page is already on a swap device and no process had modified
its in-core contents (the page table entry modify bit is clear), the kernel
clears the page table entry valid bit, decrements the reference count in the
pfdata table entry, and puts the entry on the free list for future allocation.

3. If a copy of the page is on a swap device but a process had modified its
contents in memory, the kernel schedules the page for swapping, as above,
and frees the space it currently occupies on the swap device.

The page stealer copies the page to a swap device if case 1 or case 3 is true.

To illustrate the differences between the last two cases, suppose a page is on a
swap device and is swapped into main memory after a process incurs a validity
fault. Assume the kernel does not automatically remove the disk copy. Eventually,
the page stealer decides to swap the page out again. If no process has written the
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page since it was swapped in, the memory copy is identica| to the disk copy and
there is no need to write the page to the swap device. If a process has written the
page, however, the memory copy differs from the disk copy, so the kernel must
write the page to the swap device, after freeing the space on the swap device
previously occupied by the page. It does not reuse the space on the swap device
immediately, so that it can keep swap space contiguous for better performance.

The page stealer fills a list of pages to be swapped, possibly from different
regions, and swaps them to a swap device when the list is full. Every page of a
process need not be swapped: Some pages may not have aged sufficiently, for
example. This differs from the policy of the swapping process, which swaps every
page of a process from memory, but the method for writing data to the swap device
is identical to that described in Section 9.1.2 for a swapping system. If no swap
device contains enough contiguous space, the kernel swaps out one page at a time,
which is clearly more costly. There is more fragmentation of a swap device in the
paging scheme than in a swapping scheme, because the kernel swaps out blocks of
pages but swaps in only one page at a time.

When the kernel writes a page to a swap device, it turns off the valid bit in its
page table entry and decrements the use count of its pfdata table entry. If the
count drops to 0, it places the pfdata table entry at the end of the free list, caching
it until reassignment. If the count is not O, several processes are sharing the page
as a result of a previous fork call, but the kernel still swaps the page out. Finally,
the kernel allocates swap space, saves the swap address in the disk block descriptor,
and increments the swap-use table count for the page. If a process incurs a page
fault while the page is on the free list, however, the kernel can rescue the page
from memory instead of having to retrieve it from the swap device. However, the
page is still swapped if it is on the swap list.

For example, suppose the page stealer swaps out 30, 40, 50 and 20 pages from
processes A, B, C, and D, respectively, and that it writes 64 pages to the swap
device in one disk write operation. Figure 9.20 shows the sequence of page-
swapping operations that would occur if the page stealer examines pages of the
processes in the order A, B, C, and D. The page stealer allocates space for 64
pages on the swap device and swaps out the 30 pages of process A and 34 pages of
process B. It then allocates more space on the swap device for another 64 pages
and swaps out the remaining 6 pages of process B, the 50 pages of process C, and 8
pages of process D. The two areas of the swap device for the two write operations
need not be contiguous. The page stealer keeps the remaining 12 pages of process
D on the list of pages to be swapped but does not swap them until the list is full.
As processes fault in pages from the swap device or when the pages are no longer
in use (processes exit), free space develops on the swap device.

To summarize, there are two phases to swapping a page from memory. First,
the page stealer finds the page eligible for swapping and places the page number on
a list of pages to be swapped. Second, the kernel copies the page to a swap device
when convenient, turns off the valid bit in the page table entry, decrements the
pfdata table entry reference count, and places the pfdata table entry at the end of
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Groups of 64 Pages to Swap

Proc A 30 pgs Proc B 6 pgs Proc D 12 pgs
Proc B 34 pgs Proc C 50 pgs
Proc D 8 pgs
A30 B34 B6 C50 D8
Swap Device

Figure 9.20. Allocation of Swap Space in Paging Scheme

the free list if its reference count is 0. The contents of the physical page in
memory are valid until the page is reassigned.

9.2.3 Page Faults

The system can incur two types of page faults: validity faults and protection faults.
Because the fault handlers may have to read a page from disk to memory and sleep
during the 1/0 operation, fault handlers are an exception to the general rule that
interrupt handlers cannot sleep. However, because the fault handler sleeps in the
context of the process that caused the memory fault, the fault relates to the running
process; hence, no arbitrary processes are put to sleep.

9.2.3.1 Validity Fault Handler

If a process attempts to access a page whose valid bit is not set, it incurs a validity
fault and the kernel invokes the validity fault handler (Figure 9.21). The valid bit
is not set for pages outside the virtual address space of a process, nor is it set for
pages that are part of the virtual address space but do not currently have a physical
page assigned to them. The hardware supplies the kernel with the virtual address
that was accessed to cause the memory fault, and the kernel finds the page table
entry and disk block descriptor for the page. The kernel locks the regiop containing
the page table entry to prevent race conditions that would occur if the page stealer
attempted to swap the page out. If the disk block descriptor has no record of the
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algorithm vfault /* handler for validity faults */
input: address where process faulted
output: none

{

}

find region, page table entry, disk block descriptor
corresponding to faulted address, lock region;
if (address outside virtual address space)

{
send signal (SIGSEGV: segmentation violation) to process;
goto out;

}

if (address now valid) /* process may have slept above */
goto out;

if (page in cache)

remove page from cache;

adjust page table entry;

while (page contents not valid) /* another proc faulted first */
sleep (event contents become valid);

else /* page not in cache */
assign new page to region;
put new page in cache, update pfdata entry;

if (page not previously loaded and page “demand zero”)
clear assigned page to 0;

else

{
read virtual page from swap dev or exec file;
sleep (event 1/0 done);

}

awaken processes (event page contents valid);
)
set page valid bit;
clear page modify bit, page age;
recalculate process priority;

out: unlock region;

Figure 9.21. Algorithm for Validity Fault Handler

299
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faulted page, the attempted memory reference is invalid and the kernel sends a
“segmentation violation” signal to the offending process (recall Figure 7.25). This
is the same procedure a swapping system follows when a process accesses an invalid
address, except that it recognizes the error immediately because all legal pages are
memory resident. If the memory reference was legal, the kernel allocates a page of
memory to read in the page contents from the swap device or from the executable
file.
The page that caused the fault is in one of five states:

On a swap device and not in memory,
On the free page list in memory,

In an executable file,

Marked “demand zero,”

Marked “demand fill.”

Let us consider each case in detail.

If a page is on a swap device and not in memory (case 1), it once resided in
main memory but the page stealer had swapped it out. From the disk block
descriptor, the kernel finds the swap device and block number where the page is
stored and verifies that the page is not in the page cache. The kernel updates the
page table entry so that it points to the page about to be read in, places the pfdata
table entry on a hash list to speed later operation of the fault handler, and reads
the page from the swap device. The faulting process sleeps until the I/0O completes,
when the kernel awakens other processes who were waiting for the contents of the
page to be read in. :

For example, consider the page table entry for virtual address 66K in Figure
9.22. If a process incurs a validity fault when accessing the page, the fault handler
examines the disk block descriptor and sees that the page is contained in block 847
of the swap device (assume there is only one swap device): Hence, the virtual
address is legal. The fault handler then searches the page cache but fails to find an
entry for disk block 847. Therefore, there is no copy of the virtual page in
memory, and the fault handler must read it from the swap device. The kernel
assigns page 1776 (Figure 9.23), reads the contents of the virtual page from the
swap device into the new page, and updates the page table entry to refer to page
1776. Finally, it updates the disk block descriptor to indicate that the page is still
swapped and the pfdata table entry for page 1776 to indicate that block 847 of the
swap device contains a duplicate copy of the virtual page.

The kernel does not always have to do an 1/0 operation when it incurs a
validity fault, even though the disk block descriptor indicates that the page is
swapped (case 2). It is possible that the kernel had never reassigned the physical
page after swapping it out, or that another process had faulted the virtual page into
another physical page. In either case, the fault handler finds the page in the page
cache, keying off the block number in the disk block descriptor. It reassigns the
page table entry to point to the page just found, increments its page reference
count, and removes the page from the free list, if necessary. For example, suppose
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